REVIEW ARTICLE


Myeloid-derived Suppressor Cells in Cancer: A Review on the Pathogenesis and Therapeutic Potentials



Seidu A. Richard
Department of Medicine, Princefield University, P. O. Box MA 128, Ho-Volta Region, Ghana, West Africa


Article Metrics

CrossRef Citations:
0
Total Statistics:

Full-Text HTML Views: 150
Abstract HTML Views: 161
PDF Downloads: 39
ePub Downloads: 29
Total Views/Downloads: 379
Unique Statistics:

Full-Text HTML Views: 108
Abstract HTML Views: 78
PDF Downloads: 35
ePub Downloads: 29
Total Views/Downloads: 250



© 2018 Seidu A. Richard.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: (https://creativecommons.org/licenses/by/4.0/legalcode). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Department of Medicine, Princefield University, P. O. Box MA 128, Ho-Volta Region, Ghana, West Africa; Tel: +233508404595; Email: gbepoo@gmail.com.


Abstract

Myeloid-Derived Suppressor Cells (MDSCs) are multifarious group of immature cells that arise from the myeloid and amass in individuals with cancer, sepsis, burns, or chronic inflammation. It has been evidenced that these group of cells are efficient in modifying adaptive and innate immune responses, coherent with their assumed key biological roles. It is evidenced that MDSCs inter-communicate with Tumor-Associated Macrophages (TAM), Tumor-Associated Neutrophils (TAN), Dendritic Cells (DCs), Receptor for Advanced Glycation End-products (RAGE), Toll-Like Receptors (TLRs), Matrix Metalloproteinase (MMPs) as well as High Mobility Group Box 1 (HMGB1) during carcinogenesis. This interaction although elaborated in various studies and reviews still does not explain in details as to how their interplay results in cancer pathogenesis. We noted that MDSC contributed to cancer immune suppression via TLR-4 receptor and lipopolysaccharideas (LPS). Furthermore, MDSC contributed to cancer development via MMPs (MMP-9 and MMP1-12) as well as RAGE. In the cancer microenvironment, HMGB1-driven MDSC amassment expedites cancer development and metastasis via PMN-MDSCs, macrophages, DCs and Immature Myeloid Cells (IMC). Also, HMGB1 intermediation with MDSCs via RAGE and/or TLR-4 leading to cancer development. Nevertheless, MDSCs have already proven potent in some cancers and are currently been used as treatment options although further studies are needed in some other cancers. Our review, therefore, explores the pivotal pathogenic and therapeutic roles of MDSCs in cancer.

Keywords: MDSC, HMGB1, MMPs, RAGE, TLRs, Macrophages.